Квантовые точки: полиграфия и другие области применения
«Нанотехнологии» - слово со сложной историей и контекстом в русском языке, к сожалению, слегка дискредитированное. Однако если отвлечься от ироничного общественно-экономического подтекста, то можно констатировать, что нанотехнологии за последние годы из научно-теоретического концепта стали обретать формы, которые в обозримом будущем могут стать реальными коммерческими продуктами и войти в нашу жизнь.
Отличный пример тому – квантовые точки. Технологии с использованием наночастиц полупроводников постепенно находят себе применения в совершенно различных областях: медицина, полиграфия, фотовольтаика, электроника – некоторые из продуктов еще существуют на уровне прототипов, где-то технология реализована частично, а какие-то уже практически используются.
Так что такое «квантовая точка» и «с чем ее едят»?
Квантовая точка – это нанокристал неорганического полупроводникового материала (кремния, фосфида индия, селенида кадмия). «Нано» - значит измеряющийся в миллиардных долях, размеры таких кристаллов варьируются в пределах от 2 до 10 нанометров. Из-за такого малого размера электроны в наночастицах ведут себя совсем не так как в объемных полупроводниках.
Энергетический спектр квантовой точки неоднороден, в нем есть отдельные уровни энергии для электрона (отрицательно заряженной частицы) и дырки. Дыркой в полупроводниках называется незаполненная валентная связь, носитель положительного заряда численно равному электрону, она появляется, когда связь между ядром и электроном разрывается.
Если создаются условия, при которых носитель заряда в кристалле переходит с уровня на уровень, то при этом переходе излучается фотон. Изменяя размер частицы можно управлять частотой поглощения и длиной волны этого излучения. Практически же это значит, что в зависимости от размера частицы точки при облучении они будут светиться разным цветом.
Возможность контролировать длину волны излучения через размер частицы позволяет получать из квантовых точек устойчивые вещества, превращающие поглощаемую ими энергию в световое излучение – фотостабильные люминофоры.
Растворы на основе квантовых точек превосходят традиционные органические и неорганические люминофоры по ряду параметров, важных для тех областей практического применения, в которых необходима точная перенастраиваемая люминесценция.
Преимущества квантовых точек:
- Фотостабильны, сохраняют флуоресцентные свойства в течение нескольких лет.
- Высокая стойкость к фотовыцветанию: в 100 – 1000 раз выше, чем у органических флуорофоров.
- Высоких квантовый выход флуоресценции – до 90%.
- Широкий спектр возбуждения: от УФ до ИК (400 – 200 нм).
- Высокая чистота цвета из-за высоких пиков флуоресценции (25-40 нм).
- Высокая устойчивость к химической деградации.
Еще одним преимуществом, в особенности для полиграфии, является то, что на основе квантовых точек можно делать золи – высокодисперсные коллоидные системы с жидкой средой, в которой распределены мелкие частицы. А значит из них можно производить растворы, пригодные для струйной печати.
Области применения квантовых точек:
Защита документов и изделий от фальсификации: ценных бумаг, банкнот, удостоверений личности, штампов, печатей, сертификатов, свидетельств, пластиковых карт, товарных знаков. Система многоцветного кодирования на основе квантовых точек может быть коммерчески востребована для цветовой маркировки продукции в пищевой, фармацевтической, химической промышленности, ювелирных изделий, произведений искусства.
Благодаря тому, что жидкая основа может быть водной или уф-отверждаемой, при помощи чернил с квантовыми точками можно маркировать практически любые объекты – для бумажных и других впитывающих основ - чернила на водной основе, а для невпитывающих (стекло, дерево, металл, синтетические полимеры, композиты) – уф-чернила.
Маркер в медицинских и биологических исследованиях. Благодаря тому, что на поверхность квантовых точек можно нанести биологические маркеры, фрагменты ДНК и РНК, реагирующие на определенный тип клеток, их можно использовать в качестве контраста в биологических исследованиях и диагностике рака на ранних стадиях, когда опухоль еще не определяется стандартными методами диагностики.
Использование квантовых точек в качестве флуоресцентных меток для изучения опухолевых клеток invitro– одна из наиболее перспективных и быстро развивающихся сфер применения квантовых точек в биомедицине.
Массовому внедрению этой технологии препятствует только лишь вопрос о безопасности применения контрастов с квантовыми точками в исследованиях invivo, так как большая часть из них производится из очень токсичных материалов, а размеры настолько малы, что они с легкостью проникают через любые барьеры организма.
Дисплеи на квантовых точках: QLED – технология создания дисплеев LCDсо светодиодной подсветкой на квантовых точках уже опробована передовыми производителями электроники. Применение этой технологии позволяет сократить энергопотребление дисплея, увеличить световой поток по сравнению с LED экранами на 25-30%, более сочные цвета, четкая цветопередача, глубина цвета, возможность делать экраны сверхтонкими и гибкими.
Прототип первого дисплея, по этой технологии был представлен компанией Samsungв феврале 2011, а первый компьютерный дисплей выпустила компания Philips.
В нем квантовые точки использованы для получения красного и зеленого цветов из спектра излучения синих светодиодов, что обеспечило близкую к естественной цветопередачу. В 2013 году компания Sony выпустила QLED экран, работающий по такому же принципу. В текущий момент эта технология производства больших экранов не имеет широкого применения из-за высокой себестоимости производства.
Лазер на квантовых точках. Лазер, рабочей средой которого являются квантовые точки в излучающей области, имеет ряд преимуществ в сравнении с традиционными полупроводниковыми лазерами на основе квантовых ям. У них лучше характеристики по полосе частот, интенсивности шума, они менее чувствительны к изменениям температуры.
Благодаря тому, что изменение состава и размера квантовой точки позволяет управлять активной средой такого лазера, стала возможна работа на длинах волн, которые раньше были недоступны. Эта технология активно применяется на практике в медицине, с ее помощью был создан лазерный скальпель.
Энергетика
На основе квантовых точек также разработаны несколько моделей тонкопленочных солнечных батарей. В их основе лежит следующий принцип действия: фотоны света попадают на фотоэлектрический материал, содержащий квантовые точки, стимулируют появление пары электрона и дырки, энергия которых равна или превосходит минимальную энергию, необходимую электрону данного полупроводника для того, чтобы перейти из связанного состояния в свободное. Изменяя размеры нанокристаллов материала можно варьировать «энергетическую производительность» фотоэлектрического материала.
На основе этого принципа уже создано несколько оригинальных работающих прототипов различных видов солнечных батарей.
В 2011 г. исследователи из университета Нотр-Дама предложили «солнечную краску» на основе диоксида титана, нанесение которой может превратить любой объект в солнечную батарею. У нее довольно низкое КПД (всего 1%), но зато она дешева в производстве и может производиться в больших объемах.
В 2014 г. Ученые из Массачусетского технологического института представили метод изготовления солнечных элементов из ультратонких слоёв квантовых точек, КПД их разработки – 9%, а главное ноу-хау заключается в технологии объединения квантовых точек в пленку.
В 2015 г. Лаборатория Центра передовых технологий солнечной фотовольтаики в Лос-Аламосе предложила свой проект окон-солнечных батарей с КПД 3,2%, состоящих из прозрачного люминесцентного квантового концентратора, который может занимать достаточно большую площадь, и компактных солнечных фотоэлементов.
А вот исследователи из американской национальной лаборатории возобновляемых источников энергии (NREL) в поисках оптимального сочетания металлов для производства ячейки с максимальной квантовой эффективностью создали настоящего рекордсмена производительности – внутренняя и внешняя квантовая эффективность их батареи на тестах составила 114% и 130% соответственно.
Эти параметры не являются КПД батареи, которая сейчас показывает сравнительно небольшой процент – всего 4,5%, однако оптимизация сбора фотопотока и не являлась ключевой целью исследования, которая заключалась только в подборе наиболее эффективного сочетания элементов. Тем не менее стоит отметить, что до эксперимента NREL ни одна батарея не показывала квантовую эффективность выше 100%.
Как видим потенциально сферы практического применения квантовых точек широки и разнообразны, теоретические разработки ведутся сразу в нескольких направлениях. Массовому внедрению их в различных сферах препятствует ряд ограничений: дороговизна производства самих точек, их токсичность, несовершенство и экономическая нецелесообразность самой технологии производства.
В самом ближайшем будущем массовое распространение может получить система цветового кодирования и маркировки чернилами на основе квантовых точек. Понимая, что эта рыночная ниша пока не занята, но является перспективной и наукоемкой, компания IQDEMY в качестве одной из научно-исследовательских задач своей химической лаборатории (Новосибирск) определила разработку оптимальной рецептуры уф-отверждаемых чернил и чернил на водной основе, содержащие квантовые точки.
Первые полученные образцы печати впечатляют и открывают дальнейшие перспективы практического освоения этой технологии: